Non-differentiable solutions for non-linear local fractional heat conduction equation

نویسندگان

چکیده

Fractional calculus has many advantages. Under consideration of this paper is a (2+1)-dimensional non-linear local fractional heat conduction equation with arbitrary degree non-linearity. Backlund transformation reduced form the constructed by Painleve analysis. Based on transformation, some exact non-differentiable solutions are obtained. To gain more insights obtained solutions, two constrained to Cantor set and then spatio-temporal fractal structures profiles these shown. This further reveals that plays important role in dealing problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-linear Rough Heat Equation

This article is devoted to define and solve an evolution equation of the form dyt = ∆yt dt + dXt(yt), where ∆ stands for the Laplace operator on a space of the form L(R), and X is a finite dimensional noisy nonlinearity whose typical form is given by Xt(φ) = ∑N i=1 x i tfi(φ), where each x = (x , . . . , x) is a γ-Hölder function generating a rough path and each fi is a smooth enough function d...

متن کامل

Solutions for some non-linear fractional differential equations with boundary value problems

In recent years, X.J.Xu [1] has been proved some results on mixed monotone operators.  Following the paper of X.J.Xu, we study the existence and uniqueness of the positive solutions for non-linear differential equations with boundary value problems. 

متن کامل

Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains

In this article, the local fractional Homotopy perturbation method is utilized to solve the non-homogeneous heat conduction equations. The operator is considered in the sense of the local fractional differential operator. Comparative results between non-homogeneous and homogeneous heat conduction equations are presented. The obtained result shows the non-differentiable behavior of heat conducti...

متن کامل

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Thermal Science

سال: 2021

ISSN: ['0354-9836', '2334-7163']

DOI: https://doi.org/10.2298/tsci21s2309z